POWER DEMAND OF TRANSFORMERS IN COMMERCIAL NERVE CENTRES IN NIGERIA – BENIN CITY AS A CASE STUDY.

434

BY

G. I. Ighalo & B. Omatahunde

Ambrose Alli University, Ekpoma Nigeria

ighawin@yahoo.com

ABSTRACT

Since independence, Nigeria has never known constant power supply and smooth distribution of power. Power demand is of paramount interest to the electrical engineer concerned with the generation, transmission, and economic implications of electric energy. This situation is so due to the technical and economic implications of electric energy production/consumption. Benin City as one of the load infested areas in Nigeria could provide a solution to the problem of stabilizing power supply in Nigeria if carefully studied. This study reveals that the power demand in Benin City has been on the increase. This is an eye opener to the PHCN (Power Holding Company of Nigeria), which must take appropriate measures necessary to accommodate this increasing power demand. The study further reveals that the Brewery factory in Guinness injection substation has the highest load density with a value of 102.0 VA/m² this is due to the running of motors for 24/7 hours. The lowest load density is that from the Dam feeder in Ikpoba Dam., with a value of 0.3VA/m².

Keywords: injection, power demand, substation, transformers, transmission.

INTRODUCTION

Electrical energy demand in Nigeria is on the increase due to the ever increasing population and the attendant increase in commercial and industrial activities. This is even worse in urban centres where the population is concentrated due to rural to urban drift in populations. [Michael, 1972]

As power demand grows with population growth the generation, transmission and distribution networks must be strengthened to cope with the consequent technical and economic shortfalls. With increasing power demand, the loading of the generators, transformer, transmission lines and all the associated switchgear also increase. Hence, concerted efforts must be made to monitor the pattern of this power demand so that appropriate financial and technical measures can be taken to enhance the status of the power distribution/transmission network equipment..

A load survey of this nature is necessary because, with increasing demand for power all the distribution network equipment will have to handle larger normal and fault current levels, hence complexity and cost of protective gear required will also increase. [Theraja, 1995]

This study will help the power utility engineers to plan for and forecast future trends in power demand, and thus be able to take appropriate techno-economic measures necessary to forestall power outages. This will make for a stable power supply and improve the standard of living of the citizenry (consumers). A network diagram for Benin City is shown in Fig 1.0

MATERIALS AND METHODS

This study being rather a load survey is a statistical problem. In this case injection sub-stations in Benin City with their distribution transformers were surveyed, in order to achieve a good estimate of power demand, the KVA rating and KVA readings for every one hour for one week were taken and recorded. Some consumer loads were also measured and recorded.

Certain performance factors such as average demand, maximum demand factor, diversity factor, load factor, load density and coverage area, were investigated in this study, where

Average Load	=	Kwh consumed during the period considered Hours in the period considered
Demand Factor	=	Maximum demand (usually < 1) Total Connected Load
Diversity Factor	=	sum of individual maximum demand Maximum demand of the entire load
Load Factor	=	Average power per year (or per month or per day Maximum demand
Load Density	=	<u>Capacity of transformer in KvA</u> Area Covered by transformer in m ²
	=	Load Area Covered by Load

The various classes of consumers surveyed include the residential consumers, commercial and industrial consumers. The seven injection substations selected for the purpose of this study are Etete, Nekpenekpen, Ugbowo, Ikpoba dam, Guinness, Siluko and GRA injection substation, the rated powered and voltage ratios of transformers, and load reading were taken

RESULTS

s/no	Name of Injection	Rated Power	Rated	Voltage
	substation		Ratio	of
			Transform	er
1	Etete	20.5MW	33/11KV	
2	Nekpenekpen	13.5MW	33/6.6KV	
3	Ugbowo	13.5MW	33/6.6KV	
4	Ikpoba Dam	6.6MW	33/11KV	
5	Guinness	12.3MW	33/11KV	
6	Siluko	20.5MW	33/11KV	
7	GRA	13.5MW	33/11KV	

Table 1: Rated Power And Voltage Ratios Of Injection Substation Transformers

TABLE 2: Reading Of The Rated Capacity Of Injection SubstationTransformers

S/no	Name of Injo Substation	ection Rated Capacity
1	Etete	22.5MVA
2		15MVA
	Nekpenekpen	
3	Ugbowo	15MVA
4	Ikpoba Dam	7.5MVA
5	Guinness	15MVA
6	Siluko	22.5MVA
7	GRA	15MVA

TABLE 3: Feeders In Each Injection Substation

Name of Injection	Names of Feeders
Substation	
Etete A	Sapele road A1, Ihama Road A2, Ugbor A3 Dumez Road A4
Nekpenekpen B	Feeder 1, B1, Feeder 2, B2, Feeder 3, B3, Feeder 4, B4
Ugbowo C	Federal Girls Road, C1 Uselu Road, c2 Edaike C3 Ugbowo, c4
Ikpoba Dam D	Okoro Road, D1, Uselu Road D2, Edaike D3, Dam D4
Guinness E	Brewery E1, New Benin E2, Auchi Road E3 Asaba Road E4
Siluko F	Uwelu Road F1, Edo Textile F2, Oliha F3, Upper Siloko Road
	F4
GRA G	Palace G1, Sapele Road G2, GRA G3, Reservation G4

The total individual load in KVA and the coverage area in m^2 of each injection substation were estimated and tabulated as shown in table 4, the coverage area being the space of land inhabited by consumers.

s/no	Injection	Feeders	Load	Area (m ²)	Total	Total Area
	substation		(KVA)	(space of	load	(m^2)
				land		
				covered		
				by		
				consumers		
1	Etete	Sapele road	7300	86180	38.815	1180850
		Ihama road	13315	453440		
		Ugbor road	700	578730		
		dumez road	1200	62500		
2	Nekpenekpen	Feeder 1	5400	2654060	26.650	51279040
		Feeder 2	7900	9433610		
		Feeder 3	9750	6823410		
		Feeder 4	3600	28887080		
3	Ugbowo	Okhoro road	2300	73540	13.600	42454100
		Upper lawani	2300	10506320		
		Dam	900	38899780		
				1708940		
4	Guinness	Brewery	7500	459900	23.025	161178580
		New Benin	57600	1046710		
		Auchi Road	2650	1551690		
		Asaba road	7115	358780		
5	Siluko	Uwelu road	1900	1667370	20.900	6646140
		Edo textile	7000	231000		
		Upper Siluko	4100	5888610		
		Oliha	7900	3477900		
6	Gra	Palace Sapele	7650		24.850	11265080
		GRA	800			
		Reservation	9000			
			7400			

 Table 4: Calculated Total Load

From table 4, the individual load density can be determined for each feeder. Considering, for example the Sapele Road feeder in Etete injection substation, we have:

Total load = 7300 KVA

Total area = $86180m^2$

Therefore load density = load/Area Covered by load = $7300 \text{ KVA}/86180 \text{m}^2 = 0.0847$

 $KVA/m^2 = 84.7VA/m^2$

Repeating the above procedure for all the feeders in table 4 result in table 5 shown

blows with an additional column for load density in $\mathrm{KVA/m}^2$

Table 5: Load Densities of the Injection Substation.												
Injection	Feeder	Total Load	Coverage	Load Density								
substation		(KVA)	Area (m ²)	(KVA/m^2)								
Etete	Sapele Road	7300	86180	0.0847								
	Ihama Road	13313	453440	0.0294								
	Ugbor Road	6700	578730	0.0168								
	Dumez Road	1200	62500	0.0192								
Nekpenekpe	Feeder 1	5400	6254060	0.0020								
	Feeder 2	7800	6326670	0.00012								
	Feeder 3	9750	40359200	0.0002								
	Feeder 4	3600	1939110	0.00019								
Ugbowo	Federal Girl Road	2900	4469060	0.0006								
0	Uselu Road	5400	6326670	0.0007								
	Egua Edaken	2500	40359200	0.00016								
	Ugbowo	8400	1939110	0.0004								
Ikpoba Dam	Okhoro Road	2300	6743610	0.0003								
	Upper Lawani	2300	6823410	0.0007								
	Dam	9000	28887080	0.0003								
Guinness	Brewery	7500	73540	0.1020								
	New Benin	5760	10506320	0.0005								
	Auchi Road	2650	3889780	0.0007								
	Asaba	7115	1150450	0.00062								
	Road											
Siluko	Uwelu Road	1900	459900	0.00041								
	Edo Textile	7000	104710	0.0067								
	Upper Siluko	4100	1488690	0.0022								
	Road Oliha	7900	358754	0.0028								
GRA	Palace	7600	1687570	0.0045								
	Sapele	800	231060	0.0035								
	GRA	9000	5888610	0.0015								
	Reservation	7400	3477900	0.0021								

Table 5: Load Densitie	es of the Injection Substation	ı.
------------------------	--------------------------------	----

Daily Observation of maximum KVA Power demand was carried for 21 Consecutive days at each of the injection substations and the result were recorded as shown in table 6

From table 6, the load and demand factors can be calculated for each injection

substation as follows:

For Etete injection substation: Day 1

Total KVA m. d = 9248 KVA Average demand = 9248/42 = 389.5 KVA Maximum demand per 30 minutes = 510 KVA Total connected load = 38815 KVA Load factor = Average demand/Maximum demand = 38915 / 510 = 0.7637 = 76.4%Demand factor = Maximum demand / Total connected load = 510 / 38815 = 0.01321= 1.31%

The same procedure is repeated for other injection substations.

CONCLUSION

The **Brewery injection substation feeder** has the highest load density of 0.102 KVA/m² and the **dam feeder at Ikpoba dam injection substation**, the lowest at 0.003 KVA/m². The heavy industrial and commercial activities around the brewery area could have motivated PHCN to supply more of its available power to this area, considering the enormous financial returns on invested capital.

RECOMMENDATIONS

- (a) There should be a map showing the connectivity of the houses in the various substations in Benin metropolis
- (b) Any new house connected to the grid should be recorded for effective tariffs
- (c) Records of Updated appliance in use by consumers should be sent to PHCN to enable them upgrade the various substations.
- (d) To enable corrective repairs, all tariffs should be paid promptly

(e) Proper computerization should be encouraged.

REFERENCES

Cogdell J.R. (1990) Foundation of Electrical engineering; Prentice Hall, Inc

Michael N. (1972) Electrical Installation Technology, 1st edition McGraw Hill

Publishers New York.

Paddlock J. O. And Garvin R. A. (1982) Electrical Installation Technology and

Practice 13th edition Macmillan Ltd; London

Theraja B. J. ; (1995) Electrical Technology, 2^{Nd} edition, schad and co. New Delhi Pp1002 – 1015

Uppal S. L. (1998) Electrical Power, 13th edition Khanna Publishers New Delhi

Table 6 Maximum Power demand

S/N	Injection	Day																				
	Substation	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
1.	ETETE	510	480	520	516	576	560	540	520	514	490	510	550	520	522	515	510	485	520	550	510	515
2.	NEKPENEKPEN	400	390	400	410	450	440	440	420	400	410	420	452	420	405	450	410	440	425	440	450	440
3.	UGBOWO	410	410	410	420	440	430	420	410	420	410	410	430	430	440	420	420	410	420	440	430	420
4	IKPOBA DAM	550	460	500	492	504	570	480	500	460	480	520	520	500	500	480	550	560	490	504	500	480
5.	GUINESS	440	464	480	480	540	520	520	520	510	480	480	540	430	440	460	480	520	510	500	540	500
6.	SILUKO	530	510	540	540	560	570	570	520	530	530	520	510	540	540	540	510	510	560	560	560	570
7.	GRA	270	336	300	300	312	330	330	280	285	280	300	310	320	330	328	300	270	300	330	330	335

IJSER © 2013 http://www.ijser.org International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 ISSN 2229-5518

> IJSER © 2013 http://www.ijser.org

443

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 ISSN 2229-5518

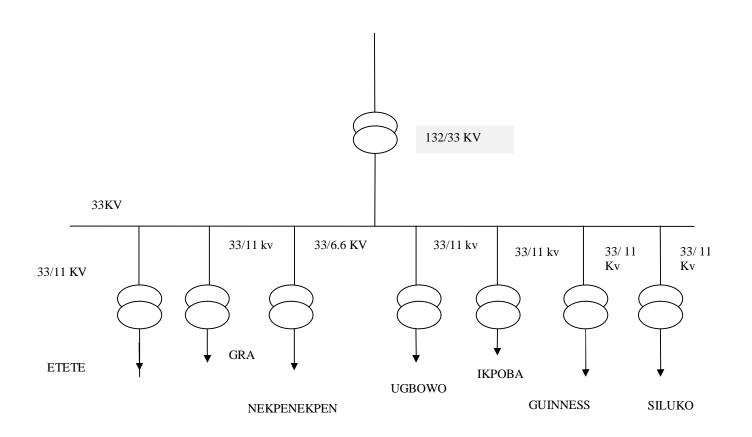


Fig. 1.0 Network diagram for Benin City

IJSER © 2013 http://www.ijser.org